Мои Телевизоры

Поговорим о школе

Шумер против Египта

Бороды, наколки, качки

Обратно в мавзолей



Как заработать 7 миллионов долларов?

22.08.2006

poincareЯ хотел более подробно рассказать о вроде бы доказанной недавно гипотезе Анри Пуанкаре, но потом решил «расширить задачу» и в сжатом виде рассказать «обо всём» . Итак, математический институт Клея в Бостоне в 2000 году определил «семь задач тысячелетия» и назначил премии в миллион долларов за решение каждой из них. Вот они:

1. Гипотеза Пуанкаре
2. Гипотеза Римана
3. Уравнение Навье-Стокса
4. Гипотеза Кука
5. Гипотеза Ходжа
6. Теория Янга-Миллиса
7. Гипотеза Берча-Свиннертона-Дайера

Про гипотезу Пуанкаре мы поговорим в следующий раз, сейчас в общих чертах расскажем о других проблемах

Гипотеза Римана (1859 г.)

Все знают что такое простые числа — это числа делящиеся на 1 и на самих себя. Т.е. 1, 2, 3, 5, 7, 11, 13, 17, 19 и т.д. Но что интересно, обозначить какую-либо закономерность в их размещении пока что оказывалось невозможным.
Так, считается, что в окрестности целого числа х среднее расстояние между последовательными простыми числами пропорционально логарифму х. Тем не менее, уже давно известны так называемые парные простые числа (простые числа-близнецы, разность между которыми равна 2, например 11 и 13, 29 и 31, 59 и 61. Иногда они образуют целые скопления, например 101, 103, 107, 109 и 113. Если такие скопления будут найдены и в области очень больших простых чисел, то стойкость криптографических ключей, используемых в настоящее время, может в одночасье оказаться под очень большим вопросом.
Риман предложил свой вариант, удобный для выявления больших простых чисел. Согласно ему, характер распределения простых чисел может существенно отличаться от предполагаемого в настоящее время. Риман обнаружил, что число P(x) простых чисел, не превосходящих x, выражается через распределение нетривиальных нулей дзета-функции Римана Z(s). Риман высказал гипотезу, не доказанную и не опровергнутую до сих пор, что все нетривиальные нули дзета-функции лежат на прямой линии R(z) = (1/2). (Извините, но я не знаю как изменить кодировку чтоб показывались греческие буквы).
В общем, доказав гипотезу Римана (если это вообще возможно) и подобрав соответствующий алгоритм, можно будет поломать многие пароли и секретные коды.

Уравнение Навье-Стокса. (1830 г.)

Нелинейный дифур описывающий тепловую конвекцию жидкостей и воздушных потоков. Является одним из ключевых уравнений в метеорологии.

ns

 

 

 

Здесь

p — давление
F – внешняя сила
r (ро) — плотность
n (ню)- вязкость
v — комплексная скорость

Наверное, его точное аналитическое решение интересно с чисто математической точки зрения, но приближенные методы решения давно существуют. Как обычно в таких случаях, нелинейный дифур разбивают на несколько линейных, другое дело что решения системы линейных дифуров оказалось необычайно чувствительным к начальным условиям. Это стало очевидно когда с введением компьютеров стало возможно обрабатывать большие массивы данных. Так в 1963 году американский метеоролог из Массачусетского технологического института Эдвард Лоренц задался вопросом: почему стремительное совершенствование компьютеров не привело к воплощению в жизнь мечты метеорологов – достоверному среднесрочному (на 2-3 недели вперед) прогнозу погоды? Эдвард Лоренц предложил простейшую модель, состоящую из трех обыкновенных дифференциальных уравнений, описывающую конвекцию воздуха, просчитал ее на компьютере и получил поразительный результат. Этот результат – динамический хаос – есть сложное непериодическое движение, имеющее конечный горизонт прогноза, в детерминированных системах (то есть в таких, где будущее однозначно определяется прошлым). Так был открыт странный аттрактор. Пpичина непpедсказуемости поведения этой и дpугих подобных систем заключается в не в том, что не веpна математическая теоpема о существовании и единственности pешения пpи заданных начальных условиях, а именно в необычайной чувствительности pешения к этим начальным условиям. Близкие начальные условия со вpеменем пpиводят к совеpшенно pазличному конечному состоянию системы. Пpичем часто pазличие наpастает со вpеменем экспоненциально, то есть чpезвычайно быстpо.

Гипотеза Кука (1971 г.)

Насколько быстро можно проверить конкретный ответ – вот нерешенная проблемой логики и компьютерных вычислений! Она была сформулирована Стивеном Куком следующим образом: «может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки?». Ршение этой проблемы могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных и продвинуть разработку алгоритма т.н. «квантовых компьютеров» что опять-таки поможет в ускорении алгоритма решения задач связанных с перебором кодов (например, тот же взлом паролей).
Пусть задана функция от 10000 переменных: f (х1х10000), для простоты примем что переменные могут принимать значения 0 или 1, результат функции тоже 0 или 1. Существует алгоритм, вычисляющий эту функцию для любого заданного набора аргументов за достаточно малое время (допустим, за t=0,1 сек).
Требуется узнать, существует ли набор аргументов, на котором значение функции равно 1. При этом сам набор аргументов, на котором функция равна 1, нас не интересует. Нам просто надо знать есть он или нет. Что мы можем сделать? Самое простое – взять и тупо перебрать всю последовательность от 1 до 10000 во всех комбинациях вычисляя значение функции на разных наборах. В самом неблагоприятном случае мы на это потратим 2tN или 21000 секунд что во много раз больше возраста Вселенной.
Но если мы знаем природу функции f, то
можно сократить перебор, отбросив наборы аргументов, на которых функция заведомо равна 0. Для многих реальных задач это позволят решить их за приемлемое время. В то же время есть задачи (так называемые NP-полные задачи), для которых даже после сокращения перебора, общее время решения остается неприемлемым.

Теперь, что касается физической стороны. Известно, что квант
может находиться в состоянии 0 или 1 с какой-то вероятностью. И что интересно, можно узнать, в каком из состояний она находится:

A: 0 с вероятностью 1
В: 1 с вероятностью 1
С: 0 с вероятностью р, 1 с вероятностью 1-р

Суть вычислений на квантовом компьютере состоит в том, чтобы взять 1000 квантов в состоянии С и подать их на вход функции f. Если на выходе будет получен квант в состоянии А, это значит, что на всех возможных наборах f=0. Ну а если на выходе будет получен квант в состоянии
B или С, это значит, что существует набор, на котором f=1.
Очевидно. что «квантовый компьютер» значительно ускорит задачи связанные с перебором данных, но будет малоэффективен в плане ускорения записи или считывания данных.

Теория Янга-Миллса

Вот это, наверное, единственный из обозначенных семи вопросов имеющих по-настоящему фундаментальное значение. Решение его существенно продвинет создание «единой теории поля», т.е. выявлению детерминированной связи между четырьмя известными типами взаимодействий

1. Гравитационным
2. Электромагнитным
3. Сильным
4. Слабым

В 1954 году Янг Чжэньнин (представитель желтой корневой расы) и Роберт Миллс предложили теорию, в соответствии с которой были объединены электромагнитное и слабое взаимодействие (Глэшоу, Вайнберг, Салам — Ноб. Премия 1979). Более того, она до сих пор служит основой квантовой теории поля. Но здесь уже начал давать сбой математический аппарат. Дело в том, что «квантовые частицы» ведут себя совсем не так как «большие тела» в ньютоновской физике. И хотя есть общие моменты, например, заряженная частица создает электромагнитное поле, а частица с ненулевой массой — гравитационное; или, например, частица эквивалентна совокупности полей, которые она создает, ведь любое взаимодействие с другими частицами производится посредством этих полей; с точки зрения физики, рассматривать поля, порожденные частицей, — то же, что рассматривать саму частицу.
Но это так сказать «в первом приближении».
При квантовом подходе одну и ту же частицу можно описывать двумя разными способами: как частицу с некоторой массой и как волну с некоторой длиной. Единая частица-волна описывается не своим положением в пространстве, а волновой функцией (обычно обозначаемой как Y), и ее местонахождение имеет вероятностную природу — вероятность обнаружить частицу в данной точке x в данное время t равна Y = P(x,t)^2. Казалось бы ничего необычного, но на уровне микрочастиц возникает следующий «неприятный» эффект — если на частицу действуют несколько полей сразу, их совокупный эффект уже нельзя разложить на действие каждого из них поодиночке, классический принцип суперпозиции не работает. Так получается потому, что в этой теории друг к другу притягиваются не только частицы материи, но и сами силовые линии поля. Из-за этого уравнения становятся нелинейными и весь арсенал математических приёмов для решения линейных уравнений к ним применить нельзя. Поиск решений и даже доказательство их существования становятся несравнимо более сложной задачей.
Вот почему решить ее «в лоб», наверное, невозможно, во всяком случае, теоретики выбрали другой путь. Так, опираясь на выводы Янга и Миллза Мюррей Гелл-Манн построил теорию сильного взаимодействия (Ноб. премия).
Главная «фишка» теории – введение частиц с дробным электрическим зарядом – кварков.

Но чтобы математически «привязать» к друг другу электромагнитное, сильное и слабое взаимодействие, нужно чтобы выполнились три условия:

1. Наличие «щели» в спектре масс, по английский — mass gap
2. Кварковый конфайнмент: кварки заперты внутри адронов и принципиально не могут быть получены в свободном виде
3. Нарушения симметрии

Эксперименты показали, что эти условия в реале выполняются, но строгого математического доказательства – нет. Т.е. по сути, нужно теорию Я-М адаптировать к 4-мерному пространству обладающими тремя означенными свойствами. По мне, так это задача тянет куда больше чем на миллион. И хотя в существовании кварков ни один приличный физик не сомневается, эксперементально их обнаружть не удалось. Предполагается что на на масштабе 10-30 между электромагнитным, сильным и слабым взаимодействием утрачивается какое-либо различие (т.н. «Великое Объединение»), другое дело что нужная для таких экспериментов энергия (более 1016ГэВ) не может быть получена на ускорителях. Но вы не волнуйтесь — проверка Великого Объединения — дело ближайших лет, если, конечно, на человечество не свалятся какие-нибудь избыточные проблемы. Физики уже разработали проверочный эксперимент связанный с нестабильностью протона (следствие теории Я-М). Но эта тема выходит за рамки нашего сообщения.

Ну и будем помнить, что это еще не всё. Остается последний бастион – гравитация. О ней мы реально ничего не знаем, кроме того, что «все притягивается» и «искривляется пространство-время». Понятно, что все силы в мире сводятся к одной суперсиле или, как говорят, «Суперобъединению». Но какой принцип суперобъединения? Алик Эйнштейн считал что этот принцип геометрический, как и принцип ОТО. Вполне может быть. Т.е. физика на самом начальном уровне — всего лишь геометрия.

Гипотеза Берча и Свиннертон-Дайера

Помните Большую Теорему Ферма, вроде бы доказанную каким-то инглизом в 1994 году? 350 лет на это потребовалось! Так вот теперь проблема получила продолжение — нужно описать все решения в целых числах
x, y, z алгебраических уравнений, то есть уравнений от нескольких переменных
с целыми коэффициентами. Примером алгебраического уравнения является уравнение
x2 + y2 = z2. Евклид дал полное описание
решений этого уравнения, но для более сложных уравнений получение решения
становится чрезвычайно трудным (например, доказательство отсутствия целых
решений уравнения xn + yn = zn ).
Берч и Свиннертон-Дайер предположили, что число решений определяется значением связанной с уравнением дзета-функци ζ(s) в точке 1: если значение дзета-функции ζ(s) в точке 1 равно 0, то имеется бесконечное число решений, и наоборот, если не равно 0, то имеется только конечное число таких решений. Здесь задача, кстати, перекликается с гипотезой Римана, только там исследовалось распределение нетривиальных нулей дзета-функции ζ(s)

Гипотеза Ходжа
Наверное самая абстрактная тема.
Как известно, для описания свойств сложных геометрических объектов их свойства аппроксимируются. Ну например шар (хотя он совсем несложный) можно представить как поверхность состоящую из маленьких квадратиков. Но если имеются поверхности более сложные, то возникает вопрос, до какой степени мы можем аппроксимировать форму данного объекта, склеивая вместе простые тела возрастающей размерности? Этот метод оказался эффективным при описании разнообразных объектов встречающихся в математике, но в некоторых случаях было необходимо прибавлять части, которые не имели никакого геометрического истолкования.
Я просмотрел на эту тему заумную книжку Гельфанда-Манина, там описывается теория Ходжа для гладких некомпактных образований, но честно говоря мало что понял, я вообще аналитическую геометрию как то не очень понимаю. Там смысл в том, что интегралы по некоторым циклам можно вычислить через вычеты, а это современные компы хорошо умеют.
Сама гипотеза Ходжа состоит в том, что для некоторых типов пространств, называемых проективными алгебраическими многообразиями, т.н. циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.

Tags:

Рецензии

Техника

Статьи

Оперы